Trapping of cis-2-butene-1,4-dial to measure furan metabolism in human liver microsomes by cytochrome P450 enzymes.
نویسندگان
چکیده
Furan is a liver toxicant and carcinogen in rodents. It is classified as a possible human carcinogen, but the human health effects of furan exposure remain unknown. The oxidation of furan by cytochrome P450 (P450) enzymes is necessary for furan toxicity. The product of this reaction is the reactive α,β-unsaturated dialdehyde, cis-2-butene-1,4-dial (BDA). To determine whether human liver microsomes metabolize furan to BDA, a liquid chromatography/tandem mass spectrometry method was developed to detect and quantify BDA by trapping this reactive metabolite with N-acetyl-l-cysteine (NAC) and N-acetyl-l-lysine (NAL). Reaction of NAC and NAL with BDA generates N-acetyl-S-[1-(5-acetylamino-5-carboxypentyl)-1H-pyrrol-3-yl]-l-cysteine (NAC-BDA-NAL). Formation of NAC-BDA-NAL was quantified in 21 different human liver microsomal preparations. The levels of metabolism were comparable to that observed in F-344 rat and B6C3F1 mouse liver microsomes, two species known to be sensitive to furan-induced toxicity. Studies with recombinant human liver P450s indicated that CYP2E1 is the most active human liver furan oxidase. The activity of CYP2E1 as measured by p-nitrophenol hydroxylase activity was correlated to the extent of NAC-BDA-NAL formation in human liver microsomes. The formation of NAC-BDA-NAL was blocked by CYP2E1 inhibitors but not other P450 inhibitors. These results suggest that humans are capable of oxidizing furan to its toxic metabolite, BDA, at rates comparable to those of species sensitive to furan exposure. Therefore, humans may be susceptible to furan's toxic effects.
منابع مشابه
Glutathione trapping to measure microsomal oxidation of furan to cis-2-butene-1,4-dial.
Furan is a liver carcinogen and toxicant. Furan is oxidized to the reactive dialdehyde, cis-2-butene-1,4-dial, by microsomal enzymes. This reactive metabolite readily reacts with glutathione nonenzymatically to form conjugates. A high-performance liquid chromatography-electrochemical method for the detection of cis-2-butene-1,4-dial-glutathione (GSH) conjugates in microsomal preparations was de...
متن کاملHepatobiliary toxicity of furan: identification of furan metabolites in bile of male f344/n rats.
Furan, which occurs in a wide variety of heat-treated foods, is a potent hepatotoxicant and liver carcinogen in rodents. In a 2-year bioassay, furan caused hepatocellular adenomas and carcinomas in mice and rats but also high incidences of bile duct tumors in rats. Furan is bioactivated by cytochrome P450 enzymes to cis-2-butene-1,4-dial, an α,β-unsaturated dialdehyde, which readily reacts with...
متن کاملDetection of DNA adducts derived from the reactive metabolite of furan, cis-2-butene-1,4-dial.
Furan is a toxic and carcinogenic compound used in industry and commonly found in the environment. The mechanism of furan's carcinogenesis is not well-understood and may involve both genotoxic and nongenotoxic pathways. Furan undergoes oxidation by cytochrome P450 to cis-2-butene-1,4-dial, which is thought to mediate furan's toxic effects. Consistently, cis-2-butene-1,4-dial readily reacts with...
متن کاملDmd057794 1132..1136
Furan is a liver toxicant and carcinogen in rodents. Although humans are most likely exposed to furan through a variety of sources, the effect of furan exposure on human health is still unknown. In rodents, furan requires metabolism to exert its toxic effects. The initial product of the cytochrome P450 2E1-catalyzed oxidation is a reactive a,b-unsaturated dialdehyde, cis-2-butene-1,4-dial (BDA)...
متن کاملDmd058222 1737..1750
Diosbulbin B (DB), a major constituent of the furano-norditerpenes in Dioscorea bulbifera Linn, exhibits potential antineoplasmic activity and hepatotoxicity. The metabolism and reactive metabolites of DB in vitro (with human and animal liver microsomes) and in vivo in rats were investigated. The human enzymes involved in DB metabolism were identified. DB was first catalyzed into reactive metab...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Drug metabolism and disposition: the biological fate of chemicals
دوره 40 3 شماره
صفحات -
تاریخ انتشار 2012